
Minimizing the Impact of Loop Hardening on Runtime Performance

Introduction

(a) The Problem

Fault attacks are a type of software attack in which an attacker with physical access to a device

disrupts the execution of that device, leading to an alteration of behavior and, with the right

targeting, potentially leaking sensitive information into the outside world. With the continuing

proliferation of Internet-of-Things devices, attack surfaces for fault attacks have never been so

prevalent. Unfortunately, some devices in the Internet-of-Things must operate in public spaces

where the ability of device operators to provide physical security is necessarily limited. This

means it is necessary to build fault-protection mechanisms into these devices, ideally at both

the software and hardware levels. At the software level, one critical property to secure is to

ensure that loops iterate the correct number of times. One example which illustrates the

importance of this property is the Advanced Encryption Standard (AES) protocol: prior work has

shown that disrupting iterations by corrupting the loop counter enables an attacker to retrieve

the key, thus giving the attacker access to potentially sensitive data [1].

(b) Our Approach

To address this issue, we implement the work of Proy et al [2]. They implement an algorithm

which performs minimal loop hardening. In loop hardening, instructions in the loop are

duplicated so that disruptions to execution can be detected by comparing the results of the

duplicated instructions. Discrepancies can be dealt with by directing control flow to an error

handler. If done naively, that is, by duplicating every instruction in the loop, this process can be

very expensive. The work of Proy et al. performs minimal loop hardening: that is, it performs



loop hardening that duplicates only the instructions absolutely necessary to ensure the correct

number of loop iterations.

Instruction duplication causes instructions that are largely independent of the original

instruction to be inserted into the basic blocks of the loop. In fact, there are no true (dataflow)

dependencies between the duplicated instructions and the original instructions. We recognize

this as an opportunity for parallelism through superscalar processing on multiple functional

units. To take advantage of this opportunity, we implement a list scheduler to order instructions

so that the hardware can execute them in parallel, thus reducing the runtime performance

impact of loop hardening.

(c) Related work

In practice, according to Proy et al. [2], the most common strategy for performing software

hardening is to have engineers insert protections manually, which is a time-consuming and error

prone process. However, there has been other work in hardening software against fault attacks.

Barenghi et al. [3] provide a specific hardening scheme for protecting AES in particular.

However, their technique does not protect against register corruption. By duplicating instructions

at the IR level, Proy et al.’s technique ensures that duplicated instructions each have their own

register, meaning that it does not have this vulnerability. De Keulenaer et al. [4] perform loop

hardening using executable binaries as input. Their technique is limited in the loops it can

harden because it only works on loops whose counters are updated once per iteration. Oh et al.

[5] , targeting hardware faults rather than fault attacks, proposes a redundancy approach that

duplicates all instructions rather than just the minimal set of instructions necessary to ensure

correct loop iteration count as done here.

(d) Contributions

Our contributions include



- An implementation of Proy et al.’s [2] minimal loop hardening set of algorithms

- A list scheduler which takes advantage of the superscalar processing opportunities that

occur with loop hardening

- An evaluation of the performance impact of both the loop hardening and the loop

hardening with list scheduling on a variety of real-world loops pulled from the coreutils

set of utility programs.

Loop Hardening - Details

Loop hardening involves duplicating instructions inside the loop. The duplicated instructions

perform some loop computations in parallel. In order to be useful, the results of these duplicated

instructions must be compared with those of the original instructions; if there are discrepancies,

this means that there is possibly an ongoing fault attack and that execution must be terminated

and the program must exit or at minimum stop processing sensitive data that could be leaked.

Proy et al. focus on ensuring that the number of loop iterations is correct. This is

important because for a number of cryptographic applications, an incorrect number of iterations

can result in information being leaked and security guarantees being compromised. The

algorithm is split into two main stages. The first identifies which instructions to duplicate, while

the second performs the duplication.

(a) Identifying Instructions to Secure.

The first stage identifies which instructions to duplicate (secure). To do this, their algorithms

identify each variable that is used to control a condition that leads out of the loop. For each of

these variables, their algorithms perform a backwards slice through the loop’s control-flow

graph, recording the instructions that may be used to compute a given value. Allowing for

arbitrary control flow in the loop introduces additional complexity: values used in loop conditions



may be updated conditionally. Therefore, it is also necessary to secure the control-flow

instructions that determine whether or not a loop-controlling value is updated.

The algorithm which identifies instructions to secure is a worklist algorithm. Starting with a loop

exit condition, each instruction’s arguments are added to the worklist. This in turn allows all

instructions that compute a value affecting whether the loop’s exit to be processed. These

values are recorded, and later duplicated. Branch instructions to duplicate, which may be

necessary in case a loop-controlling value is dependent on control flow, are tracked separately

because they require different handling to be duplicated correctly (see subsection (b)).

(b) Duplicating Instructions

In general, instruction duplication is relatively straightforward. A key caveat is that instructions

whose arguments are the values produced by other duplicated instructions must use the values

produced by the duplicates rather than the originals. However, the instruction can be simply

duplicated and added to the same basic block as the original

Secured branch instructions, however, require special consideration. Duplicating a

branch instruction and placing it directly after the original violates the abstraction rules of a basic

block, and, in a related way, wouldn’t serve to confirm that the branch is taken correctly. Instead,

for each ith successor bbs a basic block bb with a duplicated branch instruction, a new basic

block bbnew with the duplicated branch instruction is inserted in place of that successor. All

successors of bbnew are an error handler block except for the ith successor of bbnew. The ith

successor of bbnew is bbs, the original ith successor of the old basic block. In this way, both a

branch instruction and its duplicate must execute in the same way for control to flow to bbs as

normal. Otherwise, control will flow to the error handler. This strategy allows for the early

detection and handling of inconsistent results between the original and duplicate dataflow

subgraphs, which could potentially be the result of a fault attack.



The error-handler block is generated and inserted by the pass. It can hold arbitrary

error-handling code; in our implementation, we simply call the “exit” function with a non-zero

error code.

List Scheduling

The instructions duplicated in the previous step are, by design, entirely independent of the

originals. This means that the duplicated instructions can be run in parallel with the originals.

This is possible using the superscalar capabilities of modern processors—at least if there are

enough functional units available for the types of instructions duplicated. In order to take

advantage of this opportunity, we wrote a list scheduler that reorders instructions such that

instructions near each-other in order are more likely to be independent. This allows the

hardware’s out-of-order execution capabilities to be leveraged, since independent instructions

will be fetched together more often, more closely in time, and thus hardware may run them

simultaneously more frequently, therefore decreasing execution time. This list scheduler runs on

LLVM IR; its purpose is to reorder instructions so that the hardware’s look-ahead naturally

encounters independent instructions more often.

The list scheduler is based off of the list scheduling algorithm presented in class. First,

we implemented a dependency DAG that is built for each basic block, with nodes representing

instructions and edges representing dependencies. We add two types of dependency edges to

the DAG. One type of edge is (true) dataflow dependency edges. We walk the use-def chains in

the instructions, adding dependencies between the definitions and uses. The other type of edge

we add are side-effect edges. The order of instructions with side effects must be preserved

relative to other instructions with side effects in case the order of those side effects is important

for the intended behavior of the program (e.g. two print calls occuring in the correct order).

Thus, we add edges between subsequent occurrences of instructions with side effects. We

need not add edges between an instruction with side effects and all subsequent instructions with



side effects because the dependencies are captured transitively in the DAG. We also ensure

that memory reads (which do not, strictly speaking, have side effects) are included in this

category; if a read instruction at a memory cell is reordered before a store instruction that also

stores to that memory cell, incorrect behavior could result.

With the dependency graph built, we compute the priorities of each instruction. Starting

from instructions that have no instructions dependent on them, we traverse the DAG, recursively

computing the priority values of each instruction based on the cumulative maximum priority of

the instructions that that instruction is dependent on.

Scheduling occurs in the typical way, with a ready list containing all instructions that have

all of the dependencies satisfied, and an in-flight list that contains all instructions that have yet to

finish executing. When an instruction finishes, we check each instruction dependent on it to see

if those instructions have no other outstanding dependencies; if so, we add them to the ready

list as well, ensuring the ready list is kept in decreasing priority order. There is no need to

handle anti-edges in this formulation because each definition has a unique value, as enforced

by SSA.

The basic block’s terminating instruction is dealt with separately. It is not added to the

DAG, and is necessarily kept at the end of the block. Similarly, Phi nodes, for simplicity, are not

added to the DAG either; rather, they are prepended to the start of the basic block.

Experimental Setup

In order to evaluate the performance of our replicated transformation, we focus on the GNU

implementation of coreutils, since the benchmark suite of Proy et al. [2] comprises this.

Moreover, since the problem we seek to address is largely concerned with edge computing

devices an attacker may have physical access to, the expectations around hardware

architecture are slightly different than for many consumer products specifically due to the

commonality of relatively low-cost ARM microcontrollers in these devices. For this reason, we



performed the benchmarks on an emulated Cortex A53, using QEmu. The Cortex A53 is a

2-way superscalar processor with an 8-stage pipeline, implementing the Armv8-A ISA [6].

To accomplish this, we compile several different versions of the GNU coreutils, all of

which are produced by using the coreutils’ build system to produce LLVM bitcode which we then

run several passes on, re-inserting the modified bitcode back into the coreutils build before

completion. Specifically, we evaluate three different versions of the final binaries: (1) a “baseline

runtime” version, produced by taking the bitcode, registering data dependencies between

sequential instructions (to provide a comparison for later scheduling optimisations), and

compiling a final binary; (2) a “hardened” version, produced by performing the same followed by

the various loop hardening transformations discussed above; and (3) a “hardened with list

scheduling” version, which comprises the same but with a final list scheduling pass.

We then selected a subset of coreutils, excluding some which are not possible to

reasonably benchmark (e.g. because they inherently rely on timing, like timeout). In all, we

tested 43 different coreutils programs, compiling them for Armv8-A, running them under QEmu

simulating a Cortex A53 processor.

Experimental Evaluation

As we might expect, based on the fact that our programs are simply doing more work, by and

large, we generally observe a slowdown relative to baseline performance. While we see some

exceptions to this (e.g. chown), a major reason for these discrepancies is likely tied to the

overhead a utility may experience on start-up: these are all short-running utilities which mostly

comprise printing out minor information to the user. Major differences here are likely due to loop

transformations required as a corollary of the loop hardening.



Figure 1: Comparison from baseline with all coreutils programs

A longer running example, which is more representative of the performance impact of our

overall transformations is du. The benchmark for du was on the longer running side,

approximately 30 seconds per-run of the utility, so the results are less subject to the same noise

as short-running programs.



Figure 2: Comparison for du, with error

Here, we see that while both hardened versions of the program are slower running than the

baseline version, we have a significant difference between the naive placement of instructions

compared to the list scheduled version. Moreover, despite the redundancy in instructions,

performance is largely comparable. A major contributor to this result is likely the fact that our

instruction duplication results in inherently non-data dependent instructions which have the

same control dependencies; this leads to more exploitable parallelism for the processor to take

advantage of when performing out of order execution.

Surprises and Lessons Learned

Originally, we anticipated that we may see a more significant performance penalty associated

with the duplicated instructions, and perhaps more significantly, the duplicated loops. However,

consistent with Proy et al. we see, in general, a modest performance penalty, rather than a

significant one.

The largest lesson which can be learned from this is the true capability of modern

processors, even relatively modest ones, to exploit instruction-level parallelism. Since the

generated programs are redundant, but largely consist of independent copies of original



instructions (to the extent that new instructions are inserted), there exist myriad opportunities to

exploit data-parallelism in the final code. Likewise, modern branch prediction likely helps us

significantly in reducing the runtime cost of duplicated branch instructions, since simply

predicting the same branch seen is essentially always correct, barring modifications to the

instructions or data at runtime by external causes.

Conclusions and Future Work

In this paper, we addressed the problem of fault attacks on Internet-of-Things (IoT) devices by

implementing Proy et al.'s algorithm for minimal loop hardening. Our approach involves

duplicating only the necessary instructions to ensure the correct number of loop iterations and

taking advantage of the opportunity for parallelism through superscalar processing on multiple

functional units. We implemented a list scheduler to order instructions for parallel execution,

reducing the runtime performance impact of loop hardening. Our contributions include an

implementation of Proy et al.'s algorithm, a list scheduler, and an evaluation of the performance

impact on GNU coreutils. Largely, performance is minimally impacted, at least when dealing with

microcontrollers with fair pipelines and multiple functional units which can be concurrently

utilized.

Possible future work at this stage consists largely of more realistic evaluation. More

extensive testing for the runtime of transformed programs, namely security sensitive programs

reflecting the possible concerns associated with the threat model discussed in the introduction

would give a better representation of the real-world cost associated with the hardening

techniques discussed. Likewise, expanded coverage of processors evaluated would give a

more full-featured picture of the impact of these transformations on lower-end devices, which

may only have 3-stage pipelines and lack the capability to meaningfully exploit instruction-level

parallelism.



Along a different axis of evaluation, a real-world assessment of the robustness of these

transformations against irradiation-based attacks would provide the ability for a better analysis

of the security-runtime trade-off possible. While Proy et al. evaluate this somewhat, in the

context of bit flips, this was done using a custom modification to gdb, rather than physical

testing.

Distribution of Total Credit

We believe a 50%/50% distribution of credit is fair.

References

[1] Dehbaoui, A., Mirbaha, A. P., Moro, N., Dutertre, J. M., & Tria, A. (2013). Electromagnetic

glitch on the AES round counter. In Constructive Side-Channel Analysis and Secure Design: 4th

International Workshop, COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected

Papers 4 (pp. 17-31). Springer Berlin Heidelberg.

[2] Proy, J., Heydemann, K., Berzati, A., & Cohen, A. (2017). Compiler-assisted loop hardening

against fault attacks. ACM Transactions on Architecture and Code Optimization (TACO), 14(4),

1-25.

[3] Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., & Regazzoni, F. (2010, October).

Countermeasures against fault attacks on software implemented AES: effectiveness and cost.

In Proceedings of the 5th Workshop on Embedded Systems Security (pp. 1-10).

[4] De Keulenaer, R., Maebe, J., De Bosschere, K., & De Sutter, B. (2016). Link-time smart card

code hardening. International Journal of Information Security, 15, 111-130.

[5] Oh, N., Shirvani, P. P., & McCluskey, E. J. (2002). Error detection by duplicated instructions

in super-scalar processors. IEEE Transactions on Reliability, 51(1), 63-75.

[6] ARM. (2014). ARM Cortex-A53 MPCore Processor Technical Reference Manual., from

https://developer.arm.com/documentation/ddi0500/d

https://developer.arm.com/documentation/ddi0500/d



